If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+14v-56=0
a = 7; b = 14; c = -56;
Δ = b2-4ac
Δ = 142-4·7·(-56)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-42}{2*7}=\frac{-56}{14} =-4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+42}{2*7}=\frac{28}{14} =2 $
| 9.5+c=21.5 | | 8x-6+8x=180 | | a/164363-19=10 | | 3(−3−3x)+4=−53(−3−3x)+4=−5 | | x+61=x+51=180 | | -0.6x+4.55=-0.2x+0.95 | | 8(2(^x+3))=48 | | -8(-1-6n)=248 | | -7(k-9)=9(k=5)-14k | | x+61=x+51 | | 5x+4(x+0.25)=3.7 | | 2.4+0.3x=0.6 | | 9=x/(4/33) | | x/(x+100)=0.80 | | 7y-4=-1 | | 6(x-2)=8x+8(3x+5) | | f(2)=3(2)-9 | | 4(x+1.020=3x | | 1/3x=1/4x+1 | | -j/5=75 | | 175=77-7x | | 400x-0.92=600x+0.12 | | 7(7m-1)=252 | | (3+8n)=37 | | x+10/2=2(x-1) | | ^(2)+5x-8=4x+4 | | 4(8-4r)-1=-1 | | 4x+5(x+0.25)=3.7 | | 3.3x-22=1.5x+5 | | 9y-4y+8y+8y+6=48 | | 4(2a-4)+20=36 | | (4-8a)=52 |